

Driven by technology.

Built to endure.

# GAS PRODUCT CATALOG

Presented by VMAN Engine, where power meets precision.

### ABOUI VMAN ENGINE



VMAN is a highly professional engine manufacturing enterprise based in Shanghai, integrating design, research and development, production, and sales into one cohesive operation. Founded in 2007, the company initially imported high-power diesel engine technology. Through continuous overseas study and the localization of parts assembly (CKD) for imported machines (CBU), VMAN has built a skilled and cohesive team.

The company consistently develops new products, adopts advanced manufacturing technologies, utilizes sophisticated production equipment, and leverages extensive production management experience and modern testing methods to establish the VMAN brand as a benchmark of excellence. Every product is strictly controlled across all stages, including

design, procurement, technology, field operations, and quality, ensuring compliance with both domestic and international standards.

VMAN's product portfolio spans from construction machinery, generator sets, marine applications, and more, covering both diesel and gas engines. The power range extends from 25 kW to 2020 kW, with future plans to expand up to 3700 kW. All engines meet Stage II and Stage III emission standards.

Headquartered in Shanghai, VMAN operates a manufacturing facility in Changzhou, China. Additionally, the company has a branch in Singapore and is planning to establish a European branch in the near future.

The **VMAN Engine** boasts a fully advanced manufacturing process and a robust quality management system. Equipped with state-of-the-art facilities and extensive experience in modern production management, we maintain a rigorous approach to part assembly and debugging to prevent leaks of gas, water, and oil. Every engine undergoes a standardized leak test to ensure the highest tightening quality. Additionally, we utilize ESTIC technology (Japanese Nut Runner Machines) for all critical bolts. Each engine is thoroughly debugged and tested before being released to the market.

#### **Utilization of Advanced Technology**

All testing equipment is imported from renowned engine manufacturers. Every engine must meet stringent technical standards during on-site trials.

#### Multi-Level Testing and 110% Load Testing

Each engine undergoes multi-level testing tailored to customer requirements. Additionally, it is subjected to 110% load testing, as well as sudden loading and unloading tests, to ensure the highest quality and reliability.

#### ISO 9001:2015 Certified Quality Management System

Our production line incorporates advanced methods, including automated delivery systems, rotary carriers, cylinder press fitting, and front-rear oil seal press fitting, to ensure precise control over production and quality.



### History

2007-2009

#### Importing technology & Drawing interpretation

Part drawing, assemble drawing, machine drawing, QA system, etc

#### Learning & Training

5 times staff training abroad

4 times professors to our factory for guidance

2009-2014

#### CKD & CBU Diesel engines

Getting aptitude of assembling CKD diesel engine, Match up CBU&CKD diesel engines with Customers

#### Build new factory in Shanghai

Realize home manufacture and finish all series of V6 V8 V12 V16 engine and get excellent feedback from customers

From 2017

#### Starting international trading business

Now had export to Korea, Taiwan, Indonesia, Algeria, Nigeria, Pakistan, Malaysia, UAE, Vietnam, Poland, Albania, Argentina and other countries.

From 2019

#### Building New Branch factory

In ChangZhou City, Extend more power range products In particular high power engines up to 2MW.

2020-2022

#### New C & CE series Engines Launch

Develop New C&CE series Engines and put to the market.Extend full power range from 62kW to 1100kW

From 2022

#### Set up branch in Singapore

VMAN Engine Singapore P, Ltd set up on July.2022..
Provide technical training and service support for the global market.

2022-2023

#### Further expand the product range

C03 series diesel engine put on the market, power range 25kW to 55kW; CET13 AND DT30 gas engine put on the market, power range 250kW to 500kW.

From 2024

#### Improvement and new product

Launch of DE58 and DT58 series engine. Expanding power range to 2222 kW for diesel engines, and 1350kW for gas engines.



New branch factory in ChangZhou City

### Gas Engine



DT series Gas engine is developed from 2018, cooperate with our Polish parter, over 5 years of research on cogeneration systems and developed their own solutions for industrial gas engines working on biogas with variable parameters, nature gas and others. By changing the construction of the engine's main parts, let them more suitable for different gas resource, enhance efficiency of engine, also enhance the parts service time to save the maintenance cost of fully service life time.

**CET series Gas engine** is developed by AVL, AVL is a famous engine technology consulting company in the world, headquartered in Austria. Most of main parts of engine till now still import or used famous brand product to ensure the engine highly service time less maintenance cost.



# Gas Engine



| Model  | Туре | Speed<br>(rpm) | Electrical<br>power<br>(kW) | Thermal<br>output<br>(kW) | Disp.<br>(L) | Size<br>(mm)       | Flywheel   |
|--------|------|----------------|-----------------------------|---------------------------|--------------|--------------------|------------|
| CT07A  | L6   |                | 100                         | 115                       | 6.5          | 1212 x 841 x 1146  | SAE 3#11.5 |
| CET13A | L6   |                | 250                         | 282                       | 12.80        | 1360 x 898 x 1138  |            |
| DT22A  | V12  | 1500           | 350                         | 411                       | 22.61        | 1717 x1392 x1360   | SAE 1#14   |
| DT30A  | V16  |                | 500                         | 641                       | 30.14        | 2340 x 1392 x 1360 |            |
| DT58   | V12  |                | 1200                        | 1231                      | 57.2         | 2526 × 1781 × 2109 | SAE 00# 21 |
| СТ07В  | L6   |                | 100                         | 115                       | 6.5          | 1212 x 841 x 1146  | SAE 3#11.5 |
| CET13B | L6   | 4000           | 250                         | 282                       | 12.80        | 1360 x 898 x 1138  |            |
| DT22B  | V12  | 1800           | 350                         | 411                       | 22.61        | 1717 x1392 x1360   | SAE 1#14   |
| DT30B  | V16  |                | 500                         | 641                       | 30.14        | 2340 x1392 x1360   |            |

### CT07 Gas Engir



#### **INTRODUCTION**

CT series gas engine developed independently by VMAN is a classic product. It is characterized by energy-saving and environmental-friendly, excellent performance, compact structure, reliable and durable. The indexes, such as pollutant emission, dynamic performance, economy, and reliability, reach the international advanced level.

The CT07 gas engine uses Woodward gas engine control system to ensure stable and reliable engine operation

| Ratings                 | 1500rpm / 50Hz | 1800rpm / 60Hz |
|-------------------------|----------------|----------------|
|                         | CT07A          | CT07B          |
| Electrical power (kW)   | 100            | 100            |
| Thermal output (kW)     | 115            | 115            |
| Electrical efficiency * | 38.31%         | 38.31%         |
| Thermal efficiency *    | 42.14%         | 42.14%         |
| Total efficiency *      | 82.46%         | 82.46%         |

#### **GENERAL ENGINE DATA**

| Engine Model                   | CT07A                                                             | CT07B |  |  |
|--------------------------------|-------------------------------------------------------------------|-------|--|--|
| Engine Type                    | 6 cylinder, Inline-type, Turbo charged & intercooled (air to air) |       |  |  |
| Speed                          | 1500 rpm 1800rpm                                                  |       |  |  |
| Bore x stroke                  | 105 x 124 mm                                                      |       |  |  |
| Number of valve per cylinder   | 4                                                                 |       |  |  |
| Displacement                   | 6.5                                                               | 6.5 L |  |  |
| Compression ratio              | 10.5 : 1                                                          |       |  |  |
| Rotation {Looking at flywheel} | Counter clockwise {CCW}                                           |       |  |  |
| Firing order                   | 1-5-3-6-2-4                                                       |       |  |  |
| Combustion Type                | W                                                                 |       |  |  |
| Controller system              | Woodward PG+                                                      |       |  |  |
| Outstanding dimistation        | 1212 x 841 x 1146 mm                                              |       |  |  |
| Engine Dry Weight              | 560 kg                                                            |       |  |  |
| The part and the part having   | SAE 11.5# flywheel                                                |       |  |  |
| Flywheel and flywheel housing  | SAE 3# flywheel housing                                           |       |  |  |
|                                |                                                                   |       |  |  |

<sup>-</sup> Note: All data of gas generator sets are measured under the test environment: Methane volume content ≥95%, Gas temperature 10-40 °C, Gas humidity <60%, Negative pressure of air intake >-3kPa, Exhaust back pressure <5kPa, Absolute atmospheric pressure 101.32kPa, Environmental temperature 25°C, Relative humidity  $\leq$ 30%, Altitude  $\leq$ 1000m

### CT07 Gas Engine

#### **GAS CONSUMPTION CALCULATION**

| Engine Model                      | CT07A      |       | CT07B |       |
|-----------------------------------|------------|-------|-------|-------|
| Fuel                              | Nature Gas |       |       |       |
| Fuel Consumption of generator set |            |       |       |       |
|                                   | kW         | Nm3/h | kW    | Nm3/h |
| 100%                              | 100        | 26    | 100   | 26    |
| 50%                               | 50         | 15    | 50    | 15    |

<sup>-</sup>Standard reference conditions: ; Atmospheric pressure 100kPa, intake temperature 25°, relative humidity 50%. The deviation range of the data is +/-4%.

#### **INTAKE & EXHAUST SYSTEM**

| Engine Model                                 | CT07A | CT07B |
|----------------------------------------------|-------|-------|
| Max.Exhaust Back Pressure (kPa)              | 10    | 10    |
| Max.Exhaust Temp.(After Turbo°C)             | 590   | 590   |
| Max.Exhaust Flow (Nm³/h)                     | 478   | 478   |
| Max.Intake Gas Flow (Nm³/h)                  | 27.5  | 27.5  |
| Max.Intake Air Flow (Nm³/h)                  | 450   | 450   |
| Max.Intake Resistance ( Clean filter ) (kPa) | 2.5   | 2.5   |
| Max.Intake Resistance ( Dirty filter ) (kPa) | 6     | 6     |
| Alarm Value of Intake Resistance (kPa)       | 5.5   | 5.5   |
|                                              |       |       |

#### **COOLING SYSTEM**

| Coolant main content                       | (Ethylene Glycol, water) | (Ethylene Glycol, water) |
|--------------------------------------------|--------------------------|--------------------------|
| Coolant outlet Temperature                 | 90°C                     | 90°C                     |
| Temperature Difference with inlet & outlet | 6 ±1°C                   | 5 ±1°C                   |
| Max.Coolant warning Temperature            | 95 °C                    | 95 °C                    |
| Radiator Flow                              | 252 L/min                | 277 L/min                |
| Intake air type                            | Air to air intercooler   | Air to air intercooler   |
| Intercooler allowance press drop           | 8 kPa                    | 8 kPa                    |
| Intercooler Heat release                   | 19 kW                    | 19 kW                    |
| Intercooler allowance intake temperature   | 195 ±5°C                 | 195 ±5°C                 |

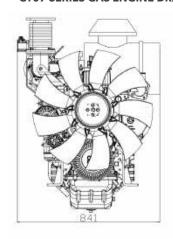
#### **ELECTRICAL SYSTEM**

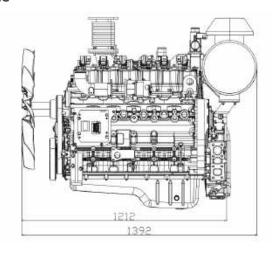
| Charging Alternator Voltage            | 24V                                           | 24V                                           |
|----------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Unaided Cold Start Average Start Speed | 130 r/min                                     | 130 r/min                                     |
| Starting aid (Option)                  | Block heater ( Min. Temperature for Unaided ) | Block heater ( Min. Temperature for Unaided ) |

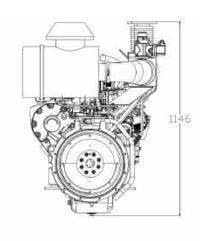
# CT07 Gas Engine

#### **LUBRICATION SYSTEM**

| Lube oil pressure @ idle speed  | Min 80 ±10 kPa | Min 80 ±10 kPa |
|---------------------------------|----------------|----------------|
| Lube oil pressure @ rated speed | 350 ±10 kPa    | 350 ±10 kPa    |
| Max.Permissible Oil Temperature | 115 °C         | 115 °C         |
| Oil consumption rate            | < 0.25 g/kWh   | < 0.25 g/kWh   |
| Oil capacity                    | 18 L           | 18 L           |
|                                 |                |                |


#### **OIL SELECTION RECOMMENDATIONS**


| 1 SHELL RIMULA R3 NG 15W-40 |  |
|-----------------------------|--|
|                             |  |
| 2 MOBIL PEGASUS 805 SAE40   |  |


#### **EXHAUST**

| Item            | CT07A                      | CT07B                      |
|-----------------|----------------------------|----------------------------|
| CH <sub>4</sub> | 1069.5 ppm                 | 1069.5 ppm                 |
| $O_2$           | ≤ 5%                       | ≤ 5%                       |
| $N_2$           | 73% - 77%(Standard values) | 73% - 77%(Standard values) |
| CO <sub>2</sub> | 64900 ppm                  | 64900 ppm                  |
| NO <sub>x</sub> | 500mg/Nm3 @ 5% O2          | 500mg/Nm3 @ 5% O2          |
| SO <sub>2</sub> | From your natural gas      | From your natural gas      |
| CO              | 705 ppm                    | 705 ppm                    |
| DUST            | From your local air        | From your local air        |

#### **CT07 SERIES GAS ENGINE DRAWING**







### CET13 Gas Engine



#### INTRODUCTION

CET series engine developed independently by VMAN is a classic product. It is characterized by energy-saving and environmental-friendly, excellent performance, compact structure, reliable and durable. The indexes, such as pollutant emission, dynamic performance, economy, and reliability, reach the international advanced level. The engine basically adopt new technology of Overhead camshaft. All main parts are imported.

Such as engine block, crankshaft, piston, Connecting rod, starting motor, bolt are all imported from Germany. Valve, turbocharger, charging alternator are all imported from U.S.A.

The engine design, component development, complete test validation came from AVL, AVL is a famous engine technology consulting company in the world, headquartered in Austria.

| Ratings                 | 1500rpm / 50Hz | 1800rpm / 60Hz |
|-------------------------|----------------|----------------|
|                         | CET13A         | CET13B         |
| Electrical power (kW)   | 250            | 250            |
| Thermal output (kW)     | 282            | 282            |
| Electrical efficiency * | 38.40%         | 38.40%         |
| Thermal efficiency *    | 43.30%         | 43.30%         |
| Total efficiency *      | 81.70%         | 81.70%         |

#### **GENERAL ENGINE DATA**

| Engine Model                   | CET13A CET13B                         |                      |  |
|--------------------------------|---------------------------------------|----------------------|--|
| Engine Type                    | 6 cylinder, Inline-type, Four- stroke |                      |  |
| Speed                          | 1500 rpm                              | 1800 rpm             |  |
| Bore x stroke                  | CET13: 130mm                          | x 161mm              |  |
| Number of valve per cylinder   | 4                                     |                      |  |
| Displacement                   | 12.82 L                               | 12.82 L              |  |
| Compression ratio              | 11.5 : 1                              | 11.5 : 1             |  |
| Rotation (Looking at flywheel) | Anti-clockwise (facing the            | power delivery end ) |  |
| Firing order                   | 1-5-3-6-2-4                           |                      |  |
| Cylinder distance              | 162 mm                                |                      |  |
| Combustion Type                | W                                     |                      |  |
| Controller system              | Woodward PG+                          |                      |  |
| Outstanding dimistation        | 2000 x 946 x 1557 mm                  |                      |  |
| Engine Dry Weight              | 1183kg                                |                      |  |
| Rotational Inertia             | 2.9 kgm2                              |                      |  |
| Ehaubaal and flawbaal bausing  | SAE 14" flywheel                      |                      |  |
| Flywheel and flywheel housing  | SAE 1# flywheel housing               |                      |  |

<sup>-</sup> Note: All data of gas generator sets are measured under the test environment: Methane volume content ≥95%, Gas temperature 10-40 °C, Gas humidity <60%, Negative pressure of air intake >-3kPa, Exhaust back pressure <5kPa, Absolute atmospheric pressure 101.32kPa, Environmental temperature 25°C, Relative humidity ≤30%, Altitude ≤1000m</p>

#### GAS CONSUMPTION CALCULATION

| Engine Model                      | CET13A     | CET13B |
|-----------------------------------|------------|--------|
| Fuel                              | Nature Gas |        |
| Fuel Consumption of generator set |            |        |
|                                   | kW         | Nm³/h  |
| 100%                              | 250        | 65     |
| 50%                               | 125        | 36     |

<sup>-</sup>Standard reference conditions: ; Atmospheric pressure 100kPa, intake temperature 25°, relative humidity 50%. The deviation range of the data is +/-4%.

#### **INTAKE & EXHAUST SYSTEM**

| Engine Model                                 | CET13A / CET13B |
|----------------------------------------------|-----------------|
| Max.Exhaust Back Pressure (kPa)              | 10±1            |
| Max.Exhaust Temp.(After Turbo°C)             | 580             |
| Max.Exhaust Flow (Nm³/h)                     | 1165            |
| Max.Intake Gas Flow (Nm³/h)                  | 65              |
| Max.Intake Air Flow (Nm³/h)                  | 1100            |
| Max.Intake Resistance (Clean filter) (kPa)   | 3.5             |
| Max.Intake Resistance ( Dirty filter ) (kPa) | 6.5             |
| Alarm Value of Intake Resistance (kPa)       | 6.3             |
|                                              |                 |

#### **COOLING SYSTEM**

| Engine Model                               | CET13A               | CET13B         |
|--------------------------------------------|----------------------|----------------|
| Coolant main content                       | 50 : 50 ( Ethylene ( | Glycol, water) |
| Coolant outlet Temperature                 | 95°                  | С              |
| Temperature Difference with inlet & outlet | 6 ±1                 | °C             |
| Max.Coolant warning Temperature            | 104                  | °C             |
| Radiator Flow                              | 533 m³/min           | 670 m³/min     |
| Intake air type                            | Air to air in        | tercooler      |
| Intercooler allowance press drop           | 11 - 13              | 3 kPa          |
| Intercooler Heat release                   | 62 k                 | W              |
| Intercooler allowance intake temperature   | 195 ±                | :5°C           |

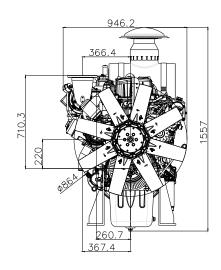
#### **ELECTRICAL SYSTEM**

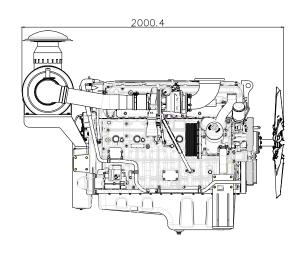
| Charging Alternator Voltage            | 24V                                           |
|----------------------------------------|-----------------------------------------------|
| Unaided Cold Start Average Start Speed | 130 r/min                                     |
| Starting aid (Option)                  | Block heater ( Min. Temperature for Unaided ) |

### CET13 Gas Engine

#### **LUBRICATION SYSTEM**

| Lube oil pressure @ idle speed  | Min 100 ±10 kPa |
|---------------------------------|-----------------|
| Lube oil pressure @ rated speed | 550±10 kPa      |
| Max.Permissible Oil Temperature | 120 °C          |
| Oil capacity                    | 33.2-41.6 L     |


#### **OIL SELECTION RECOMMENDATIONS**


| No | BRAND | MODEL                     |
|----|-------|---------------------------|
| 1  | SHELL | SHELL RIMULA R3 NG 15W-40 |
| 2  | Mobil | MOBIL PEGASUS 805 SAE40   |

#### **EXHAUST**

| 2000            |                          |
|-----------------|--------------------------|
| Item            | CET13(Value)             |
| CH <sub>4</sub> | 1069.5 ppm               |
| $O_2$           | ≤5%                      |
| N <sub>2</sub>  | 73%-77%(Standard values) |
| CO <sub>2</sub> | 70654.63 ppm             |
| NO <sub>x</sub> | 500mg/Nm3 @ 5% O2        |
| SO <sub>2</sub> | From your natural gas    |
| CO              | 705 ppm                  |
| DUST            | From your local air      |
|                 |                          |

#### **CET13 SERIES GAS ENGINE DRAWING**





### DT22 Gas Engine



#### **INTRODUCTION**

The VMAN DT22 series is a European Union CE-certified natural gas engine developed from the block up to be a reliable and durable power unit. Built upon a proven European diesel grade block, the 12-cylinders V-configuration, turbocharged and after-cooled engine features replaceable wet liners and water-cooled exhaust.

Superior engine performance is driven by Woodward control system, ECU that integrates and coordinates all critical functions including: governor, Variable ignition timing, Air fuel ratio control, Knock suppression and engine protection.

| Ratings                 | 1500rpm / 50Hz | 1800rpm / 60Hz |
|-------------------------|----------------|----------------|
|                         | DT22A          | DT22B          |
| Electrical power (kW)   | 350            | 350            |
| Thermal output (kW)     | 411            | 411            |
| Electrical efficiency * | 38.08%         | 38.08%         |
| Thermal efficiency *    | 44.68%         | 44.68%         |
| Total efficiency *      | 82.76%         | 82.76%         |

#### **GENERAL ENGINE DATA**

| Engine Model                   | DT22A                                  | DT22B     |
|--------------------------------|----------------------------------------|-----------|
| Engine Type                    | 12 cylinder, Inline-type, Four- stroke |           |
| Speed                          | 1500 rpm                               | 1800 rpm  |
| Bore x stroke                  | 130 x 1                                | 42 mm     |
| Number of valve per cylinder   | 2                                      | 2         |
| Displacement                   | 22.                                    | 61L       |
| Compression ratio              | 12.5 : 1                               |           |
| Rotation (Looking at flywheel) | Counter clockwise {CCW}                |           |
| Firing order                   | 1-12-5-8-3-10-6-7-2-11-4-9             |           |
| Combustion Type                | W                                      |           |
| Controller system              | Woodward PG+                           |           |
| Outstanding dimension          | 1552 x 1252.5 x 1320 mm                |           |
| Engine Dry Weight              | 1575 kg                                |           |
| Rotational Inertia             | 2.9 kgm2                               |           |
| Ehawheel and flowheel housing  | SAE 14"                                | 'flywheel |
| Flywheel and flywheel housing  | SAE 1#flywheel housing                 |           |

<sup>-</sup> Note: All data of gas generator sets are measured under the test environment: Methane volume content ≥95%, Gas temperature 10-40 °C, Gas humidity <60%, Negative pressure of air intake >-3kPa, Exhaust back pressure <5kPa, Absolute atmospheric pressure 101.32kPa, Environmental temperature 25°C, Relative humidity ≤30%, Altitude ≤1000m

### DT22 Gas Engine

#### **GAS CONSUMPTION CALCULATION**

| Engine Model                      | DT22A DT22B |            | 22B |       |
|-----------------------------------|-------------|------------|-----|-------|
| Fuel                              |             | Nature Gas |     |       |
| Fuel Consumption of generator set |             |            |     |       |
|                                   | kW          | Nm3/h      | kW  | Nm3/h |
| 100%                              | 350         | 92         | 350 | 92    |
| 50%                               | 175         | 53         | 175 | 53    |

#### **INTAKE & EXHAUST SYSTEM**

| Max.Exhaust Back Pressure (kPa)              | 10                                      |
|----------------------------------------------|-----------------------------------------|
|                                              | 1 · · · · · · · · · · · · · · · · · · · |
| Max.Exhaust Temp.(After Turbo°C)             | 480                                     |
| Max.Exhaust Flow (kg/h)                      | 1773                                    |
| Max.Intake Gas Flow (m³/h)                   | 93                                      |
| Max.Intake Air Flow (kg/h)                   | 1704                                    |
| Max.Intake Resistance ( Clean filter ) (kPa) | 5                                       |
| Max.Intake Resistance ( Dirty filter ) (kPa) | 6.5                                     |
| Alarm Value of Intake Resistance (kPa)       | 6.3                                     |

#### **COOLING SYSTEM**

| Coolant main content                       | 50:50 (Ethylene Glycol, water) |  |  |
|--------------------------------------------|--------------------------------|--|--|
| Coolant outlet Temperature                 | 95°C                           |  |  |
| Temperature Difference with inlet & outlet | 11 ± 1°C                       |  |  |
| Max.Coolant warning Temperature            | 97 °C                          |  |  |
| Radiator Heat release                      | 279 kW                         |  |  |
| Radiator Flow                              | 840 L/min                      |  |  |
| Intake air type                            | Air to air intercooler         |  |  |
| Intercooler allowance press drop           | 11 - 13 kPa                    |  |  |
| Intercooler Heat release                   | 81 kW                          |  |  |
| Intercooler allowance intake temperature   | 195 ± 5°C                      |  |  |

#### **LUBRICATION SYSTEM**

| Lube oil pressure @ idle speed  | Min 160 ± 10 kPa |
|---------------------------------|------------------|
| Lube oil pressure @ rated speed | 450 ± 10 kPa     |
| Max.Permissible Oil Temperature | 110 °C           |
| Oil capacity                    | 57 L             |

#### **OIL SELECTION RECOMMENDATIONS**

| No | BRAND | MODEL                     |  |
|----|-------|---------------------------|--|
| 1  | SHELL | SHELL RIMULA R3 NG 15W-40 |  |
| 2  | Mobil | MOBIL PEGASUS 805 SAE40   |  |

#### **ELECTRICAL SYSTEM**

| Charging Alternator Voltage            | 24V                                                          |
|----------------------------------------|--------------------------------------------------------------|
| Unaided Cold Start Average Start Speed | 130 r/min                                                    |
| Starting aid (Option)                  | Block heater ( Min. Temperature f <mark>or U</mark> naided ) |

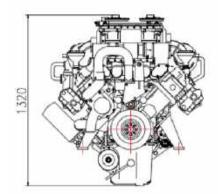
#### **EXHAUST**

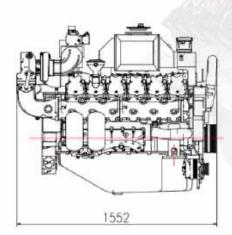
| CH <sub>4</sub> | 1069.5 ppm                |
|-----------------|---------------------------|
| O <sub>2</sub>  | ≤ 5%                      |
| N <sub>2</sub>  | 73%-77% (Standard values) |
| CO <sub>2</sub> | 70654.63 ppm              |
| NO <sub>x</sub> | 500mg/Nm3 @ 5% O2         |
| SO <sub>2</sub> | From your natural gas     |
| CO              | 705 ppm                   |
| DUST            | From your local air       |

### DT22 Gas Engine

#### **Engine Coolant**

#### When choosing water as cooling medium, the following requirements should be met:


- A. Use clean water that is slightly alkaline and does not contain corrosive compounds;
- B. The hardness is 0.7-5.3 mol/L, the content of chloride ion is less than 150 mg/L, and the PH value is 6.0-8.5;
- C. If the water quality does not meet the above requirements, the corresponding softening water equipment or descaling equipment should be added according to the coefficient of 1.2 times of the consumption of cooling water.


#### Other cooling medium

When the ambient temperature is below 5°C, antifreeze should be selected as the cooling medium.

When selecting antifreeze, the freezing point should be 5°C lower than the lowest temperature in the use area.

#### **DT22 SERIES GAS ENGINE DRAWING**







### DT30 Gas Engine



The VMAN DT30 series is a European Union CE-certified natural gas engine developed from the block up to be a reliable and durable power unit. Built upon a proven European diesel grade block, the 6-cylinders V-configuration, turbocharged and after-cooled engine features replaceable wet liners and water-cooled exhaust.

Superior engine performance is driven by Woodward control system, ECU that integrates and coordinates all critical functions including: governor, Variable ignition timing, Air fuel ratio control, Knock suppression and engine protection.

| Ratings                 | 1500rpm / 50Hz | 1800rpm / 60Hz |  |
|-------------------------|----------------|----------------|--|
|                         | DT30A          | DT30B          |  |
| Electrical power (kW)   | 500            | 500            |  |
| Thermal output (kW)     | 641            | 641            |  |
| Electrical efficiency * | 38.08%         | 38.08%         |  |
| Thermal efficiency *    | 48.85%         | 48.85%         |  |
| Total efficiency *      | 86.93%         | 86.93%         |  |



#### **GENERAL ENGINE DATA**

| Engine Model                   | DT30A                                    | DT30B    |
|--------------------------------|------------------------------------------|----------|
| Engine Type                    | 16 cylinder, V-type, Four- stroke        |          |
| Speed                          | 1500 rpm                                 | 1800 rpm |
| Bore x stroke                  | 130 x <sup>-</sup>                       | 142 mm   |
| Number of valve per cylinder   |                                          | 2        |
| Displacement                   | 30.                                      | 14 L     |
| Compression ratio              | 12.5 : 1                                 | 12.5 : 1 |
| Rotation {Looking at flywheel} | Counter clockwise {CCW}                  |          |
| Firing order                   | 1-15-6-12-8-5-16-7-11-4-9-2-14-10-3-13   |          |
| Combustion Type                | W                                        |          |
| Controller system              | Woodward PG+ / ComAp                     |          |
| Outstanding dimistation        | 1887 x 1120 x 1362 mm                    |          |
| Engine Dry Weight              | 2100 kg                                  |          |
| Rotational Inertia             | 2.9 kgm2                                 |          |
| Flywheel and flywheel housing  | SAE 14" flywheel SAE 1# flywheel housing |          |
|                                |                                          |          |

<sup>-</sup> Note: All data of gas generator sets are measured under the test environment: Methane volume content  $\geq$ 95%, Gas temperature 10-40 °C, Gas humidity <60%, Negative pressure of air intake >-3kPa, Exhaust back pressure <5kPa, Absolute atmospheric pressure 101.32kPa, Environmental temperature 25°C, Relative humidity  $\leq$ 30%, Altitude  $\leq$ 1000m

# DT30 Gas Engine

#### **GAS CONSUMPTION CALCULATION**

| Engine Model                      | DT30A DT30B |       | 30B |       |
|-----------------------------------|-------------|-------|-----|-------|
| Fuel                              | Nature Gas  |       |     |       |
| Fuel Consumption of generator set |             |       |     |       |
|                                   | kW          | Nm³/h | kW  | Nm³/h |
| 100%                              | 500         | 132   | 500 | 132   |
| 50%                               | 250         | 76    | 250 | 76    |

<sup>-</sup>Standard reference conditions: ; Atmospheric pressure 100kPa, intake temperature 25°, relative humidity 50%. The deviation range of the data is  $\pm -4\%$ .

#### **INTAKE & EXHAUST SYSTEM**

| Engine Model                                 | DT30A | DT30B |  |
|----------------------------------------------|-------|-------|--|
| Max.Exhaust Back Pressure (kPa)              | 10    | 10    |  |
| Max.Exhaust Temp.(After Turbo°C)             | 480   | 480   |  |
| Max.Exhaust Flow (kg/h)                      | 3045  | 3045  |  |
| Max.Intake Gas Flow (m³/h)                   | 140   | 140   |  |
| Max.Intake Air Flow (m³/h)                   | 2200  | 2200  |  |
| Max.Intake Resistance ( Clean filter ) (kPa) | 5     | 5     |  |
| Max.Intake Resistance ( Dirty filter ) (kPa) | 6.5   | 6.5   |  |
| Alarm Value of Intake Resistance (kPa)       | 6.3   | 6.3   |  |
|                                              |       |       |  |

#### **COOLING SYSTEM**

| Coolant main content                       | 50:50 (Ethylene Glycol, water) | 50:50 (Ethylene Glycol, water) |
|--------------------------------------------|--------------------------------|--------------------------------|
| Coolant outlet Temperature                 | 95°C                           | 95°C                           |
| Temperature Difference with inlet & outlet | 12 ±1°C                        | 12 ±1°C                        |
| Max.Coolant warning Temperature            | 97 °C                          | 97 °C                          |
| Radiator Heat release                      | 407 kW                         | 407 kW                         |
| Radiator Flow                              | 1040L/min                      | 1040L/min                      |
| Intercooler allowance press drop           | 11 - 13 kPa                    | 11 - 13 kPa                    |
| Intercooler Heat release                   | 116 kW                         | 116 kW                         |
| Intercooler allowance intake temperature   | 195 ±5°C                       | 195 ±5°C                       |
| Max.Intercooler intake air                 | 2838 kg/h                      | 2838 kg/h                      |

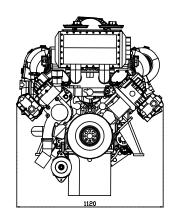
# DT30 Gas Engine

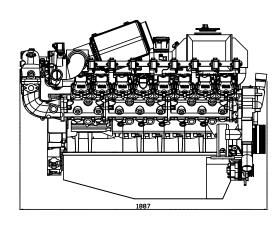
#### **LUBRICATION SYSTEM**

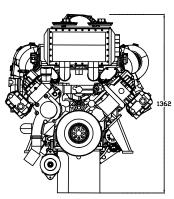
| Lube oil pressure @ idle speed  | Min 160 ± 10 kPa | Min 160 ± 10 kPa |
|---------------------------------|------------------|------------------|
| Lube oil pressure @ rated speed | 450 ±10 kPa      | 450 ±10 kPa      |
| Max.Permissible Oil Temperature | 110 °C           | 110 °C           |
| Oil capacity                    | 65-70 L          | 65-70 L          |

#### **OIL SELECTION RECOMMENDATIONS**

| No | BRAND | MODEL                     |  |
|----|-------|---------------------------|--|
| 1  | SHELL | SHELL RIMULA R3 NG 15W-40 |  |
| 2  | Mobil | MOBIL PEGASUS 805 SAE40   |  |


#### **ELECTRICAL SYSTEM**


| Charging Alternator Voltage            | 24V                                         | 24V                                           |
|----------------------------------------|---------------------------------------------|-----------------------------------------------|
| Unaided Cold Start Average Start Speed | 130 r/min                                   | 130 r/min                                     |
| Starting aid (Option)                  | Block heater (Min. Temperature for Unaided) | Block heater ( Min. Temperature for Unaided ) |


#### **EXHAUST**

| Item            | DT30A                         | DT30B                     |
|-----------------|-------------------------------|---------------------------|
| CH <sub>4</sub> | 1069.5 ppm                    | 1069.5 ppm                |
| $O_2$           | ≤5%                           | ≤5%                       |
| N <sub>2</sub>  | 73%-77% (Standard values)     | 73%-77% (Standard values) |
| CO <sub>2</sub> | 70654.63 ppm                  | 70654.63 ppm              |
| $NO_x$          | 500mg/Nm <sup>3</sup> @ 5% O2 | 500mg/Nm3 @ 5% O2         |
| SO <sub>2</sub> | From your natural gas         | From your natural gas     |
| CO              | 705 ppm                       | 705 ppm                   |
| DUST            | From your local air           | From your local air       |
|                 |                               |                           |

#### **DT30 SERIES GAS ENGINE DRAWING**







### DT58 Gas Engine



#### INTRODUCTION

DT series gas engine developed independently by VMAN is a classic product. It is characterized by energy-saving and environmental-friendly, excellent performance, compact structure, reliable and durable. The indexes, such as pollutant emission, dynamic performance, economy, and reliability, reach the international advanced level.

The DT58 gas engine uses Heinemann gas engine control system to ensure stable and reliable engine operation

#### **Engine Technical Parameter**

| •                                      |      |                            |
|----------------------------------------|------|----------------------------|
| ITEM                                   | UNIT | VALUE                      |
| Model                                  |      | DT58                       |
| Rated power                            | kW   | 1350                       |
| Quantity of cylinders                  | PCS  | 12                         |
| Cylinder bore                          | mm   | 170                        |
| Stroke                                 | mm   | 210                        |
| Displacement                           | L    | 57.2                       |
| Speed                                  | rpm  | 1500                       |
| Compression ratio                      |      | 11.5 : 1                   |
| Mean effective pressure                | MPa  | 1.54                       |
| Mean speed of piston                   | m/s  | 10.5                       |
| Oil capacity                           | L    | 300                        |
| Cooling water capacity                 | L    | 200                        |
| Dimension(L*W*H)                       | mm   | 2526 × 1781 × 2109         |
| Dry weight                             | kg   | 7610                       |
| Moment of inertia of an area(flywheel) | kgm² | 12                         |
| Direction of rotation                  |      | CCW (Look at the flywheel) |
| Fly wheel                              |      | SAE 21                     |
| Fly wheel housing                      |      | SAE 00#                    |
| EMC                                    |      | N (By VDE0857)             |
| Starter                                | kW   | 2×8.5 @DC24V               |

#### **Heat Balance List of Generator Set**

| ITEM                    | UNIT | VALUE  |
|-------------------------|------|--------|
| Gas energy              | kW   | 2898   |
| Electrical power        | kW   | 1200   |
| Thermal output          | kW   | 1231   |
| Electrical efficiency   | /    | 41.41% |
| Thermal of jacket water | kW   | 567    |
| Exhaust thermal *       | kW   | 664    |
| Thermal efficiency      | /    | 42.48% |
| Total efficiency        | /    | 83.89% |

<sup>\*</sup>Exhaust gas cooled to 120 °C for natural gas. - Note: All data of gas generator sets are measured under the test environment: Methane volume content ≥95%, Gas temperature 10-40 °C, Gas humidity <60%, Negative pressure of air intake >-3kPa, Exhaust back pressure <5kPa, Absolute atmospheric pressure 101.32kPa, Environmental temperature 25 °C, Relative humidity ≤30%, Altitude ≤1000m

#### **Lubricating Oil System**

| ITEM                          | UNIT    | VALUE |
|-------------------------------|---------|-------|
| Lubricating oil system volume | E 3 3 3 | 300   |
| Max oil temperature           | °C      | 105   |
| Oil consumption rate          | g/kWh   | ≤0.25 |

#### **Intake & Exhaust System**

| ITEM                                         | UNIT  | VALUE |
|----------------------------------------------|-------|-------|
| Exhaust temperature                          | °C    | ≤580  |
| Max Exhaust temperature                      | °C    | 620   |
| Exhaust flow (including H2O)                 | kg/h  | 5949  |
| Exhaust capacity (including H2O)             | Nm³/h | 5055  |
| Max Exhaust back pressure                    | kPa   | 2.5   |
| Diameter of exhaust pipe                     |       | DN250 |
| Combustion air flow                          | kg/h  | 5731  |
| Max.Intake Resistance ( Clean filter ) (kPa) | kPa   | 2.5   |

### DT58 Gas Engine

#### Gas System

| ITEM                                   | UNIT    | VALUE       |
|----------------------------------------|---------|-------------|
| Gas type                               |         | Natural gas |
| CH4                                    | %       | ≥80         |
| Methane number (MN)                    | /       | ≥80         |
| Gas valve group inlet pressure         | kPa     | 30-50       |
| Engine inlet gas pressure              | kPa     | 6-10        |
| Rate of gas pressure change            | kPa/sec | ≤ 1         |
| Rate of change of heating value of gas | %/min   | ≤ 2         |
| H2S                                    | mg/Nm³  | ≤ 20        |
| All of the sulfur                      | mg/Nm³  | ≤ 200       |
| Colidoosticlo                          | μm/m³   | ≤ 5         |
| Solidparticle                          | mg/m³   | ≤ 30        |

#### **Cooling System**

| ITEM                                    | UNIT  | VALUE      |
|-----------------------------------------|-------|------------|
| High temperature part heat dissipation  | kW    | 567        |
| Low temperature part heat dissipation   | kW    | 240        |
| Water flow of engine cylinder liner     | m3/h  | 65         |
| Water flow of Intercooler               | m3/h  | 65         |
| High temperature water I/O              | °C    | 83 to 90   |
| Low temperature water I/O               | °C    | 43 to 46   |
| Max.water temperature of cylinder liner | °C    | 90         |
| Water I/O pipe of cylinder liner        | DN/PN | DN100/PN16 |
| Water I/O pipe of Intercooler           | DN/PN | DN100/PN16 |
| High temperature water pressure         | MPa   | 0.28       |
| Low temperature water pressure          | MPa   | 0.21       |

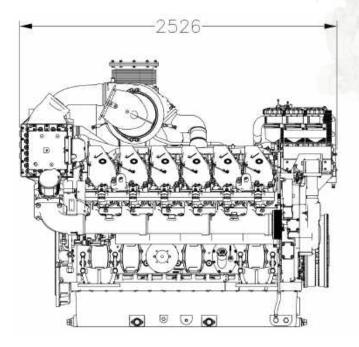
#### **Engine Emission Data**

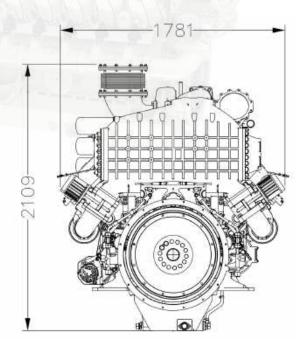
| ITEM       | UNIT   | VALUE  |
|------------|--------|--------|
| NOx (5%O2) | mg/Nm3 | ≤500   |
| CO (5%O2)  | mg/Nm3 | ≤1006  |
| HC (5%O2)  | mg/Nm3 | ≤132.7 |
| O2         | %      | 8      |
| λ          | /      | 1.5    |

#### **Oil Selection Recommendations**

| No | BRAND | MODEL                     |
|----|-------|---------------------------|
| 1  | SHELL | SHELL RIMULA R3 NG 15W-40 |
| 2  | Mobil | MOBIL PEGASUS 805 SAE40   |

#### **Engine Coolant**


#### When choosing water as cooling medium, the following requirements should be met:


- A. Use clean water that is slightly alkaline and does not contain corrosive compounds;
- B. The hardness is 0.7-5.3 mol/L, the content of chloride ion is less than 150 mg/L, and the PH value is 6.0-8.5;
- C. If the water quality does not meet the above requirements, the corresponding softening water equipment or descaling equipment should be added according to the coefficient of 1.2 times of the consumption of cooling water.

#### Other cooling medium

When the ambient temperature is below 5°C, antifreeze should be selected as the cooling medium. When selecting antifreeze, the freezing point should be 5°C lower than the lowest temperature in the use area.

#### DT58 (V12) SERIES GAS ENGINE DRAWING





# 1MW-2MW Gas Engine



#### Military quality gas engine





### CHG620/622 Gas Engine

HND Gas Engine on the basis of the licensed technology from MWM Company (Germany), started produced MWM 234 series diesel engines which type V6, V8 and V12, MWM604BL6 series diesel engines and TBD620 series V8, V12 and V16 diesel engines. In 2007, HND obtained the license of manufacturing L16/24 and L21/31 engines from MAN B&W Co., and start mass production in 2008. At present, diesel engine power range from 110kW to 2336kW.

In 2005, HND company researched and developed gas engines with its own intellectual property which technology on the basis of the MWM TBD620 diesel engine. Now which products contain CHG620L6, CHG620V8, CHG620V12, CHG620V16 and CHG622V20, 5 series gas engines, gas engines power range from 550kW to 2000kW and gas generator power range from 500kW to 2000kW.

- Advanced turbocharged, intercooler, four-stroke V-type gas engine adopts the same technology as the most advanced international gas engine.
- V-type gas engine, cylinder arrangement with 90 ° angle easily for repairing and maintenance.



#### CHG620V12

Electrical power: 1000kW
Thermal output: 1097kW
Electrical efficiency: >40.38 %
Thermal efficiency: >44.29 %
Total efficiency: >84.68 %

Gas consumption: 248 (Hu = 35.88MJ/m3)

Oil consumption rate: ≤0.25 g/kWh

First Overhaul / Maintenance: 60000H/500H

NOx (5%O2) : ≤500 mg/Nm<sup>3</sup>



CHG622V16

Electrical power: 1500kW
Thermal output: 1705kW
Electrical efficiency: >41.08 %
Thermal efficiency: >46.70%
Total efficiency: >87.78 %

Gas consumption : 366 (Hu = 35.88MJ/m3)

Oil consumption rate: ≤0.25 g/kWh

First Overhaul / Maintenance : 60000H/500H

NOx (5%O2) : ≤500 mg/Nm<sup>3</sup>



CHG622V20

Electrical power: 2000kW
Thermal output: 2215kW
Electrical efficiency: >41.3 %
Thermal efficiency: >45.75 %
Total efficiency: >87.04 %

Gas consumption: 486 (Hu = 35.88MJ/m3)

Oil consumption rate: ≤0.25 g/kWh

First Overhaul / Maintenance: 60000H/500H

NOx (5%O2) : ≤500 mg/Nm<sup>3</sup>

# Standard Configuration

| Engine and block:<br>nodular cast iron<br>the tensile strength can reach 120kgf /<br>m², and it has good toughness. | Engine body and cylinder head are made by nodular cast iron. Strong ability to bear mechanical load. Globular gold has less cracking effect on the metal matrix, It can make cast iron strength reach $70 \sim 90\%$ of the matrix structure strength, the tensile strength can reach $120  \text{kgf}  / \text{m}^2$ , and it has good toughness.                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moving Parts: 42CrMoA alloy steel. Enhance the life of moving parts reach 100,000 hours.                            | Crankshaft, camshaft and other moving parts are made of 42CrMoA alloy steel. It has a higher fatigue limit and resistance to multiple impacts after treatment, good impact toughness and outstanding wear resistance. Will adopt whole forging to retain the internal natural state of the metal, greatly improves the crankshaft strength, and enhances the crankshaft wear resistance used special heat treatment. This crankshaft will be increased more than 20% strength, enhance the life of moving parts reach 100,000 hours.                                                                              |
| Inlet & exhaust valves valve seats: MAERKISCHES WERK GMBH                                                           | HND gas Engine used original imported German inlet & exhaust valves and valve seats (MAERKISCHES WERK GMBH). The service life of inlet & exhaust valves and valve seats of HND gas engines are much longer than similar domestic products. The patented rotary air valve technology is used in fitting between the intake & exhaust valve with their valve seats. Valves and valve seat are continuously grinding during the operation of engines, let sealing surface between the two always fitted, it will double extend valves life time and rejecting "pre-ignition" and "post-ignition" of the gas engines. |
| Gas system (NGL): DUNGS                                                                                             | Gas system (NGL) includes pressure reducing valves, solenoid shut-off valves, manual shut-off valves, filters and other equipment, which are installed according to different project. The main valves of the gas transmission system adopt original German DUNGS products, DUNGS has Vibration tested combination controls Multi block and Gas Bloc according US Military Standard MIL-STD-810G/31. Worldwide support via DUNGS branches and subsidiaries in more than 50 countries.                                                                                                                             |
| Turbo-chargers                                                                                                      | HND gas engine is equipped with two original imported ABB TPS series Turbo-chargers to provide strong power for the engine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Monitoring system                                                                                                   | Heinzmann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ignition Controller                                                                                                 | Heinzmann IC-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Air-Fuel ratio control system                                                                                       | Heinzmann XIOS-UC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Knock control system                                                                                                | Heinzmann KC-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



#### 1. Engine technical parameter list

| ITEM                                   | UNIT | VALUE                     |
|----------------------------------------|------|---------------------------|
| Model                                  |      | CHG620V12                 |
| Rated power                            | kW   | 1080                      |
| Quantity of Cylinders                  | PCS  | 12                        |
| Cylinder bore                          | mm   | 170                       |
| Stroke                                 | mm   | 195                       |
| Displacement                           | L    | 53.1                      |
| Speed                                  | rpm  | 1500                      |
| Compression ratio                      |      | 12:1                      |
| mean effective pressure                | MPa  | 1.63                      |
| mean speed of piston                   | m/s  | 9.75                      |
| Oil capacity                           | L    | 180                       |
| Cooling water capacity                 | L    | 100                       |
| Dimension(L*W*H)                       | mm   | 2775×1435×2055            |
| Dry weight                             | kg   | 5000                      |
| Weight with oil                        | kg   | 5251                      |
| Moment of inertia of an area(flywheel) | kgm² | 6.69                      |
| Direction of rotation                  |      | CCW(Look at the flywheel) |
| Fly wheel                              |      | SAE21                     |
| EMC                                    |      | N (By VDE0857)            |
| Starter                                | kW   | 1×9 @DC24V                |

#### 2. Heat balance list of generator set

| ITEM                            | UNIT | VALUE  |
|---------------------------------|------|--------|
| Electrical energy               | kW   | 1000   |
| Gas energy                      | kW   | 2476   |
| Electrical efficiency           | 1    | 40.38% |
| Exhaust thermal *               | kW   | 568    |
| Water thermal of cylinder liner | kW   | 529    |
| Thermal efficiency              | /    | 44.29% |
| Total efficiency                | /    | 84.68% |
|                                 |      |        |

<sup>\*</sup>Exhaust gas cooled to 120 °C for natural gas. - Note: All data of gas generator sets are measured under the test environment: Methane volume content ≥95%, Gas temperature 10-40 °C, Gas humidity <60%, Negative pressure of air intake >-3kPa, Exhaust back pressure <5kPa, Absolute atmospheric pressure 101.32kPa, Environmental temperature 25°C, Relative humidity ≤30%, Altitude ≤1000m

#### 3. Combustion air and exhaust data sheet for engine

| ITEM                               | UNIT | VALUE |
|------------------------------------|------|-------|
| Exhaust temperature                | °C   | ≤580  |
| Max Exhaust temperature            | °C   | 620   |
| Exhaust flow (including H2O)       | kg/h | 5083  |
| Max Exhaust back pressure          | kPa  | 2.5   |
| Diameter of exhaust pipe           |      | DN250 |
| Combustion air flow                | kg/h | 4897  |
| Max air pressure before air filter | kPa  | 2.5   |

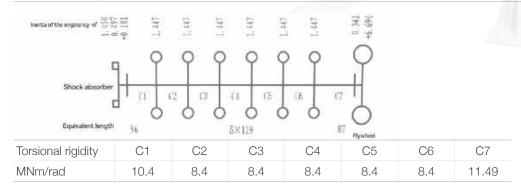
#### 4. Gas consumption data sheet

| UNIT    | VALUE                        |
|---------|------------------------------|
|         | Natural gas                  |
| %       | ≥80                          |
| /       | ≥80                          |
| kPa     | 30-50                        |
| kPa     | 6~10                         |
| Kpa/sec | 1                            |
| _ ≤     | 2%/min                       |
| Mm      | 100                          |
| ≤       | 20mg/Nm3                     |
| ≤       | 200mg/Nm3                    |
| ≤       | 5µm and 30mg/m3              |
|         | % / kPa kPa Kpa/sec ≤ Mm ≤ ≤ |

#### 5. Technical parameters of engine lubricating oil system

| ITEM                          | UNIT  | VALUE |  |
|-------------------------------|-------|-------|--|
| Lubricating oil system volume | L     | 180   |  |
| Max oil temperature           | °C    | 90    |  |
| Oil consumption rate          | g/kWh | ≤0.25 |  |

#### 6. Technical parameters of engine cooling system


| ITEM                                   | UNIT  | VALUE                  |  |
|----------------------------------------|-------|------------------------|--|
| High temperature part heat dissipation | kW    | 529                    |  |
| Low temperature part heat dissipation  | kW    | 171                    |  |
| Flow of jacket water                   | m³/h  | 65                     |  |
| Flow of Intercooler water              | m³/h  | 65                     |  |
| High temperature water I/O             | °C    | 76 to 83               |  |
| Low temperature water I/O              | °C    | 43 to 45               |  |
| Max. temperature of jacket water       | °C    | 90                     |  |
| I/O pipe of jacket water               | DN/PN | DN65/PN16<br>DN80/PN16 |  |
| I/O pipe of intercooler water          | DN/PN | DN65/PN16              |  |
| High temperature water pressure        | MPa   | 0.2                    |  |
| Low temperature water pressure         | MPa   | 0.14                   |  |

#### 7. Engine emission data

| ITEM       | UNIT   | VALUE  |
|------------|--------|--------|
| NOx (5%O2) | mg/Nm³ | ≤500   |
| CO (5%O2)  | mg/Nm³ | ≤1006  |
| HC (5%O2)  | mg/Nm³ | ≤132.7 |
| 02         | %      | 8      |
| λ          | /      | 1.6    |

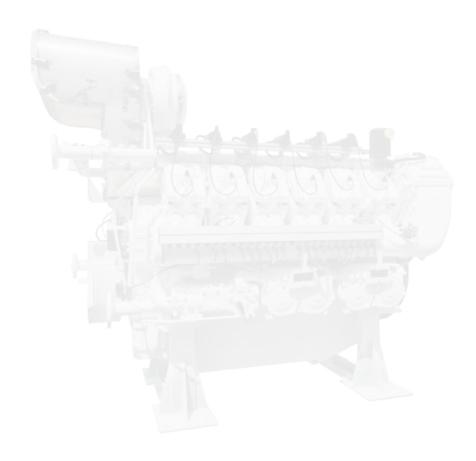
#### 8. Engine emission data

| Power        | RI       | PM                                  | Connecting rod length | Main journal                       | Crank pin journal | Allowed crankshaft force      |
|--------------|----------|-------------------------------------|-----------------------|------------------------------------|-------------------|-------------------------------|
| 1080kW       | 15       | 500                                 | 350mm                 | 152mm                              | 128mm             | 55MPa                         |
| Bore d       | Stroke s | Stroke                              | Efficiency            | Single-cylinder reciprocating mass | Crank-rod ratio   | Cylinder<br>arrangement angle |
| 170mm        | 195mm    | 4                                   | 85.3%                 | 12.61kg                            | 0.2786            | 90°                           |
| Firing order |          | A1-B2-A5-B4-A3-B1-A6-B5-A2-B3-A4-B6 |                       |                                    |                   |                               |



#### 9. Oil Selection Recommendations

| No | BRAND | MODEL                     |
|----|-------|---------------------------|
| 1  | SHELL | SHELL RIMULA R3 NG 15W-40 |
| 2  | Mobil | MOBIL PEGASUS 805 SAE40   |


#### 10. Engine coolant

#### When choosing water as cooling medium, the following requirements should be met:

- A. Use clean water that is slightly alkaline and does not contain corrosive compounds;
- B. The hardness is 0.7-5.3 mol/L, the content of chloride ion is less than 150mg/L, and the PH value is 6.0-8.5;
- C. If the water quality does not meet the above requirements, the corresponding softening water equipment or descaling equipment should be added according to the coefficient of 1.2 times of the consumption of cooling water.

#### Other cooling medium

When the ambient temperature is below 5°C, antifreeze should be selected as the cooling medium. When selecting antifreeze, the freezing point should be 5°C lower than the lowest temperature in the use area.



#### 1. Engine technical parameter list

| ITEM                                   | UNIT | VALUE                     |
|----------------------------------------|------|---------------------------|
| Model                                  |      | CHG622V16                 |
| Rated power                            | kW   | 1600                      |
| Quantity of Cylinders                  | PCS  | 16                        |
| Cylinder bore                          | mm   | 170                       |
| Stroke                                 | mm   | 215                       |
| Displacement                           | L    | 78.04                     |
| Speed                                  | rpm  | 1500                      |
| Compression ratio                      |      | 12:1                      |
| mean effective pressure                | MPa  | 1.64                      |
| mean speed of piston                   | m/s  | 10.75                     |
| Oil capacity                           | L    | 280                       |
| Cooling water capacity                 | L    | 180                       |
| Dimension(L*W*H)                       | mm   | 3495×1600×2400            |
| Dry weight                             | kg   | 7880                      |
| Weight with oil                        | kg   | 8300                      |
| Moment of inertia of an area(flywheel) | kgm² | 11.35                     |
| Direction of rotation                  |      | CCW(Look at the flywheel) |
| Fly wheel                              |      | SAE21                     |
| EMC                                    |      | N (By VDE0857)            |
| Starter                                | kW   | 2×13 @DC24V               |

#### 2. Heat balance list of generator set

| ITEM                            | UNIT | VALUE  |
|---------------------------------|------|--------|
| Electrical power                | kW   | 1500   |
| Gas energy                      | kW   | 3651   |
| Electrical efficiency           | %    | 41.08% |
| Exhaust thermal *               | kW   | 833    |
| Water thermal of cylinder liner | kW   | 872    |
| Thermal efficiency              | /    | 46.70% |
| Total efficiency                | /    | 87.78% |

<sup>\*</sup>Exhaust gas cooled to 120 °C for natural gas. - Note: All data of gas generator sets are measured under the test environment: Methane volume content ≥95%, Gas temperature 10-40 °C, Gas humidity <60%, Negative pressure of air intake >-3kPa, Exhaust back pressure <5kPa, Absolute atmospheric pressure 101.32kPa, Environmental temperature 25°C, Relative humidity ≤30%, Altitude ≤1000m

#### 3. Combustion air and exhaust data sheet for engine

| ITEM                               | UNIT | VALUE |
|------------------------------------|------|-------|
| Exhaust temperature                | °C   | ≤580  |
| Max Exhaust temperature            | °C   | 620   |
| Exhaust flow (including H2O)       | kg/h | 7495  |
| Max Exhaust back pressure          | kPa  | 2.5   |
| Diameter of exhaust pipe           |      | DN400 |
| Combustion air flow                | kg/h | 7221  |
| Max air pressure before air filter | kPa  | 2.5   |

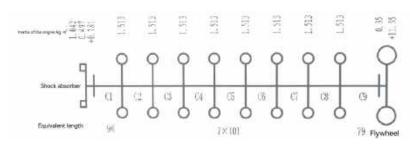
#### 4. Gas consumption data sheet

| VALUE<br>Natural gas |
|----------------------|
| Natural gas          |
| 1 1311311 311 3010   |
| ≥80                  |
| ≥80                  |
| 30-50                |
| 6~10                 |
| 1                    |
| 2%/min               |
| 100                  |
| 20mg/Nm3             |
| 200mg/Nm3            |
| 5µm and 30mg/m3      |
|                      |

#### 5. Technical parameters of engine lubricating oil system

| ITEM                          | UNIT  | VALUE |
|-------------------------------|-------|-------|
| Lubricating oil system volume | L     | 280   |
| Max oil temperature           | °C    | 95    |
| Oil consumption rate          | g/kWh | ≤0.25 |

#### 6. Technical parameters of engine cooing system


| ITEM                                   | UNIT  | VALUE     |
|----------------------------------------|-------|-----------|
| High temperature part heat dissipation | kW    | 872       |
| Low temperature part heat dissipation  | kW    | 150       |
| Flow of jacket water                   | m³/h  | 75        |
| Flow of Intercooler water              | m³/h  | 65        |
| High temperature water I/O             | °C    | 74 to 84  |
| Low temperature water I/O              | °C    | 43 to 45  |
| Max. temperature of jacket water       | °C    | 90        |
| I/O pipe of jacket water               | DN/PN | DN80/PN16 |
| I/O pipe of intercooler water          | DN/PN | DN65/PN16 |
| High temperature water pressure        | MPa   | 0.23      |
| Low temperature water pressure         | MPa   | 0.13      |

#### 7. Engine emission data

| ITEM       | UNIT   | VALUE  |
|------------|--------|--------|
| NOx (5%O2) | mg/Nm³ | ≤500   |
| CO (5%O2)  | mg/Nm³ | ≤1006  |
| HC (5%O2)  | mg/Nm³ | ≤132.7 |
| O2         | %      | 8      |
| λ          |        | 1.6    |

#### 8. Torsional vibration calculation parameters

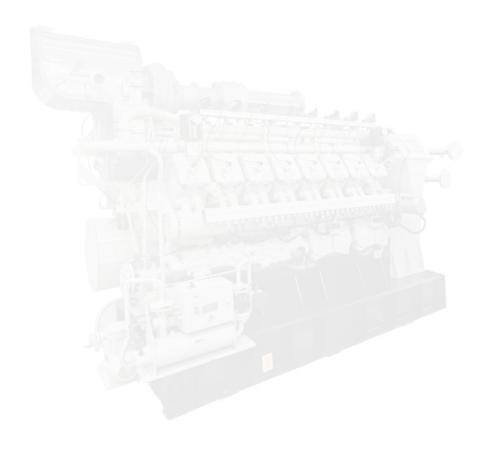
| Power        | RI       | PM                                              | Connecting rod length | Main journal                       | Crank pin journal | Allowed crankshaft force      |  |  |  |
|--------------|----------|-------------------------------------------------|-----------------------|------------------------------------|-------------------|-------------------------------|--|--|--|
| 1600kW       | 15       | 500                                             | 360mm                 | 170mm                              | 130mm             | 55MPa                         |  |  |  |
| Bore d       | Stroke s | Stroke                                          | Efficiency            | Single-cylinder reciprocating mass | Crank-rod ratio   | Cylinder<br>arrangement angle |  |  |  |
| 170mm        | 215mm    | 4                                               | 89%                   | 15.24kg                            | 0.2986            | 90°                           |  |  |  |
| Firing order |          | A1-A7-B4-B6-A4-B8-A2-A8-B3-B5-A3-A5-B2-A6-B1-B7 |                       |                                    |                   |                               |  |  |  |



| Torsional rigidity | C1   | C2    | C3    | C4    | C5    | C6    | C7    | C8    | C9    |
|--------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| MNm/rad            | 10.4 | 7.952 | 7.952 | 7.952 | 7.952 | 7.952 | 7.952 | 7.952 | 11.49 |

#### 9. Oil Selection Recommendations

| No | BRAND | MODEL                     |
|----|-------|---------------------------|
| 1  | SHELL | SHELL RIMULA R3 NG 15W-40 |
| 2  | Mobil | MOBIL PEGASUS 805 SAE40   |


#### 10. Engine coolant

#### When choosing water as cooling medium, the following requirements should be met:

- A. Use clean water that is slightly alkaline and does not contain corrosive compounds;
- B. The hardness is 0.7-5.3 mol/L, the content of chloride ion is less than 150mg/L, and the PH value is 6.0-8.5;
- C. If the water quality does not meet the above requirements, the corresponding softening water equipment or descaling equipment should be added according to the coefficient of 1.2 times of the consumption of cooling water.

#### Other cooling medium

When the ambient temperature is below 5°C, antifreeze should be selected as the cooling medium. When selecting antifreeze, the freezing point should be 5°C lower than the lowest temperature in the use area.



### CHG622V20 Gas Engine

#### 1. Engine technical parameter list

| ITEM                                   | UNIT | VALUE                     |
|----------------------------------------|------|---------------------------|
| Model                                  |      | CHG622V20                 |
| Rated power                            | kW   | 2100                      |
| Quantity of Cylinders                  | PCS  | 20                        |
| Cylinder bore                          | mm   | 170                       |
| Stroke                                 | mm   | 215                       |
| Displacement                           | L    | 97.6                      |
| Speed                                  | rpm  | 1500                      |
| Compression ratio                      |      | 12:1                      |
| mean effective pressure                | MPa  | 1.72                      |
| mean speed of piston                   | m/s  | 10.75                     |
| Oil capacity                           | L    | 330                       |
| Cooling water capacity                 | L    | 220                       |
| Dimension(L*W*H)                       | mm   | 3860×1600×2400            |
| Dry weight                             | kg   | 8800                      |
| Weight with oil                        | kg   | 9300                      |
| Moment of inertia of an area(flywheel) | kgm² | 11.35                     |
| Direction of rotation                  |      | CCW(Look at the flywheel) |
| Fly wheel                              |      | SAE21                     |
| EMC                                    |      | N (By VDE0857)            |
| Starter                                | kW   | 2×13 @DC24V               |

#### 2. Heat balance list of generator set

| ITEM                            | UNIT | VALUE  |
|---------------------------------|------|--------|
| Electrical power                | kW   | 2000   |
| Gas energy                      | kW   | 4843   |
| Electrical efficiency           | %    | 41.3%  |
| Exhaust thermal*                | kW   | 1099   |
| Water thermal of cylinder liner | kW   | 1116   |
| Thermal efficiency              | /    | 45.75% |
| Total efficiency                | /    | 87.04% |
|                                 |      |        |

<sup>\*</sup>Exhaust gas cooled to 120 °C for natural gas. - Note: All data of gas generator sets are measured under the test environment: Methane volume content ≥95%, Gas temperature 10-40 °C, Gas humidity <60%, Negative pressure of air intake >-3kPa, Exhaust back pressure <5kPa, Absolute atmospheric pressure 101.32kPa, Environmental temperature 25°C, Relative humidity ≤30%, Altitude ≤1000m

#### 3. Combustion air and exhaust data sheet for engine

| ITEM                               | UNIT | VALUE |
|------------------------------------|------|-------|
| Exhaust temperature                | °C   | ≤580  |
| Max Exhaust temperature            | °C   | 620   |
| Exhaust flow (including H2O)       | kg/h | 9943  |
| Max Exhaust back pressure          | kPa  | 2.5   |
| Diameter of exhaust pipe           |      | DN400 |
| Combustion air flow                | kg/h | 9578  |
| Max air pressure before air filter | kPa  | 2.5   |

#### 4. Gas consumption data sheet

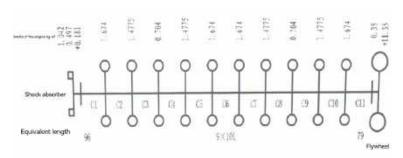
| ITEM                                   | UNIT    | VALUE       |
|----------------------------------------|---------|-------------|
| Gas type                               |         | Natural gas |
| CH4                                    | %       | ≥80         |
| Methane number (MN)                    | /       | ≥80         |
| Gas valve group inlet pressure         | kPa     | 30-50       |
| Engine inlet gas pressure              | kPa     | 6-10        |
| Rate of gas pressure change            | kPa/sec | ≤ 1         |
| Rate of change of heating value of gas | %/min   | ≤ 2         |
| Gas intake pipe                        | mm      | 100         |
| H2S                                    | mg/Nm³  | ≤ 20        |
| All of the sulfur                      | mg/Nm³  | ≤ 200       |
| Calidonatiala                          | µm/m³   | ≤ 5         |
| Solidparticle                          | mg/m³   | ≤ 30        |

#### 5. Technical parameters of engine lubricating oil system

| ITEM                          | UNIT  | VALUE |
|-------------------------------|-------|-------|
| Lubricating oil system volume | L     | 330   |
| Max oil temperature           | °C    | 95    |
| Oil consumption rate          | g/kWh | ≤0.25 |

### CHG622V20 Gas Engine

1.6


#### 6. Technical parameters of engine cooling system

| ITEM                                   | UNIT         | VALUE     |
|----------------------------------------|--------------|-----------|
| High temperature part heat dissipation | kW           | 1116      |
| Low temperature part heat dissipation  | kW           | 195       |
| Flow of jacket water                   | m³/h         | 80        |
| Flow of Intercooler water              | m³/h         | 80        |
| High temperature water I/O             | °C           | 72 to 84  |
| Low temperature water I/O              | °C           | 43 to 45  |
| Max. temperature of jacket water       | °C           | 90        |
| /O pipe of jacket water                | DN/PN        | DN80/PN16 |
| /O pipe of intercooler water           | DN/PN        | DN65/PN16 |
| High temperature water pressure        | MPa          | 0.3       |
| _ow temperature water pressure         | MPa          | 0.15      |
| 7. Engine emission data                |              |           |
| TEM                                    | UNIT         | VALUE     |
| NOx (5%O2)                             | mg/Nm3       | ≤500      |
| CO (5%O2)                              | mg/Nm3 ≤1006 |           |
| HC (5%O2)                              | mg/Nm3       | ≤132.7    |
| 02                                     | %            | 8         |

#### 8. Torsional vibration calculation parameters

λ

| Power        | RI       | PM                                                            | Connecting rod length | Main journal                       | Crank pin journal | Allowed crankshaft force      |  |  |
|--------------|----------|---------------------------------------------------------------|-----------------------|------------------------------------|-------------------|-------------------------------|--|--|
| 2105kW       | 15       | 500                                                           | 360mm                 | 170mm                              | 130mm             | 55MPa                         |  |  |
| Bore d       | Stroke s | Stroke                                                        | Efficiency            | Single-cylinder reciprocating mass | Crank-rod ratio   | Cylinder<br>arrangement angle |  |  |
| 170mm        | 215mm    | 4                                                             | 89%                   | 15.24kg                            | 0.2986            | 90°                           |  |  |
| Firing order |          | A1-B7-A2-B5-A4-B3-A6-B1-A8-B2-A10-B4-A9-B6-A7-B8-A5-B10-A3-B9 |                       |                                    |                   |                               |  |  |



| Torsional rigidity | C1    | C2   | C3   | C4   | C5   | C6   | C7   | C8   | C9   | C10  | C11   |
|--------------------|-------|------|------|------|------|------|------|------|------|------|-------|
| MNm/rad            | 10.42 | 8.18 | 8.18 | 8.18 | 8.18 | 8.18 | 8.18 | 8.18 | 8.18 | 8.18 | 12.66 |

#### 9. Oil Selection Recommendations

| No | BRAND | MODEL                     |
|----|-------|---------------------------|
| 1  | SHELL | SHELL RIMULA R3 NG 15W-40 |
| 2  | Mobil | MOBIL PEGASUS 805 SAE40   |

#### 10. Engine coolant

#### When choosing water as cooling medium, the following requirements should be met:

- A. Use clean water that is slightly alkaline and does not contain corrosive compounds;
- B. The hardness is 0.7-5.3 mol/L, the content of chloride ion is less than 150mg/L, and the PH value is 6.0-8.5;
- C. If the water quality does not meet the above requirements, the corresponding softening water equipment or descaling equipment should be added according to the coefficient of 1.2 times of the consumption of cooling water.

#### Other cooling medium

When the ambient temperature is below 5°C, antifreeze should be selected as the cooling medium. When selecting antifreeze, the freezing point should be 5°C lower than the lowest temperature in the use area.



### PROJECTS

#### GAS ENGINE MARKET STATISTICS

| Nº | Name                                                               | Model             | QTY | Installed capacity (kW) | Region   | Company                                                                  | Date of contract |
|----|--------------------------------------------------------------------|-------------------|-----|-------------------------|----------|--------------------------------------------------------------------------|------------------|
| 1  | CHG620V8 Mashgas Generator Set                                     | 500 kW            | 3   | 1500 kW                 | Sichuan  | Yingjing Fenghuang<br>Coal Industry Co., Ltd                             | 2010.10          |
| 2  | CHG620V12 Mashgas Generator Set                                    | 800 kW            | 1   | 800 kW                  | Henan    | Hebei Coal Industry Co.,<br>Ltd. No. 8 Mine                              | 2011.5           |
| 3  | CHG620L6 Natural Gas Engine                                        | 450 kW            | 1   | 450 kW                  | Sichuan  | MIRACLE POWER<br>SYSTEMS INC.                                            | 2011.6           |
| 4  | CHG620V8 Mashgas Generator Set                                     | 600 kW            | 6   | 3600 kW                 | Hunan    | Hunan Lida Energy<br>Source Development<br>Co.,Ltd.                      | 2012.8           |
| 5  | CHG620V12 Mashgas Generator Set                                    | 800 kW            | 4   | 3200 kW                 | Hunan    | Hunan Lida Energy<br>Source Development<br>Co.,Ltd.                      | 2012.12          |
| 6  | CHG620V16 Silent Type Mashgas<br>Generator Set                     | 1000 kW           | 1   | 1000 kW                 | Shanxi   | Shanxi Lanneng<br>Coalbed Methane<br>Development Co., Ltd                | 2013.4           |
| 7  | CHG620V8、CHG620V16 Mashgas<br>Generator Set                        | 600 kW<br>1000 kW | 3   | 2200 kW                 | Sichuan  | Qianwei Tangba Coal<br>Industry Co., Ltd.                                | 2015.4           |
| 8  | CHG620V8、CHG620L6 Natural Gas<br>Generator Get                     | 600 kW<br>400 kW  | 2   | 1000 kW                 | Shanxi   | SiACTPOWER Co., Ltd.                                                     | 2014.6           |
| 9  | CHG620V16 Mashgas Generator Set<br>CHG620V12 Mashgas Generator Set | 1000 kW<br>800 kW | 4   | 3600 kW                 | Guizhou  | Shuikuang Wenjiaba<br>Coal Mine No.1 Mine                                | 2017.3           |
| 10 | CHG620L6 Natural Gas Genrator Set                                  | 400 kW            | 1   | 400 kW                  | Henan    | Luoyang Xinaohua Oil<br>and Gas Co., Ltd.                                | 2016.9           |
| 11 | CHG620L6 Natural Gas Engine                                        | 400kW             | 2   | 800 kW                  | Henan    | Xin Ao(China)Gas<br>Investment Limited                                   | 2017.4           |
| 12 | CHG620L6 Natural Gas Genrator Set                                  | 400kW             | 1   | 400 kW                  | Shanxi   | Baoji Fifth People's<br>hospital                                         | 2017.5           |
| 13 | CHG620V8 low Concentration Mashgas<br>Generator Set                | 500kW             | 5   | 2500 kW                 | Shanghai | Shanghai Weiting Power<br>System Co., Ltd                                | 2018.2           |
| 14 | CHG620V12 low Concentration<br>Mashgas Generator Set               | 800kW             | 3   | 2400 kW                 | Anhui    | Yuanyi Coal Mine of<br>Huaibei Mining Co., Ltd.<br>Electric Power Branch | 2017.12          |
| 15 | CHG620V16 Mashgas Generator Set                                    | 1000kW            | 1   | 1000 kW                 | Guizhou  | Shuikuang Wenjiaba<br>Coal No.1 Mine and<br>Phase II                     | 2018.3           |
| 16 | CHG620V16 Mashgas Generator Set、CHG620V12 Mashgas Generator Set    | 1000 kW<br>800 kW | 4   | 4000 kW                 | Guizhou  | Shuikuang Wenjiaba<br>Coal No.2 Mine                                     | 2018.6           |

### PROJECTS

#### GAS ENGINE MARKET STATISTICS

| Nº | Name                                                             | Model   | QTY | Installed capacity (kW) | Region    | Company                                                                 | Date of contract |
|----|------------------------------------------------------------------|---------|-----|-------------------------|-----------|-------------------------------------------------------------------------|------------------|
| 17 | CHG620V12 low Concentration<br>Mashgas Generator Set             | 800 kW  | 4   | 3200 kW                 | Anhui     | Suzhou Qinan Coal<br>Mine Gas Power Plant                               | 2018.7           |
| 18 | CHG620V12 Silent Type Low<br>Concentration Mashgas Generator Set | 800 kW  | 1   | 800 kW                  | Shanghai  | Shanghai Weitingxin<br>Power Generating<br>Machine Co.,Ltd.             | 2019.1           |
| 19 | CHG620V16 Silent Type Low<br>Concentration Mashgas Generator Set | 1000 kW | 10  | 10000 kW                | Guizhou   | Yonggui Energy<br>Development Co., Ltd.<br>(Xintian coal mine)          | 2019.3           |
| 20 | CHG620V16 Silent Type Low<br>Concentration Mashgas Generator Set | 1000 kW | 2   | 2000 kW                 | Guizhou   | Yonggui Energy<br>Development Co., Ltd.<br>(Nuodong coal<br>mine)       | 2019.5           |
| 21 | CHG622V20 Silent Type Semi Coke<br>Gas Generator Set             | 1500 kW | 5   | 7500 kW                 | Shandong  | Shandong Hengli<br>Electric MOTOR Co.,<br>Ltd.                          | 2019.5           |
| 22 | CHG620L6/CHS620L6 Marine Main<br>Engine                          | 420 kW  | 2   | 840 kW                  | Guangdong | Guangzhou Qiaogeli<br>Electromechanical<br>Equipment Co., Ltd.          | 2019.7           |
| 23 | CHG620V16 Silent Type Low<br>Concentration Mashgas Generator Set | 1000 kW | 2   | 2000 kW                 | Guizhou   | Yonggui Energy<br>Development Co., Ltd.<br>(Second Phase in<br>Xintian) | 2019.8           |
| 24 | CHG620V16 Silent Type Low<br>Concentration Mashgas Generator Set | 1000 kW | 2   | 2000 kW                 | Guizhou   | Yonggui Energy<br>Development Co., Ltd.<br>(Xixiu coal mine)            | 2019.8           |
| 25 | CHG620V16 Silent Type Low<br>Concentration Mashgas Generator Set | 1000 kW | 1   | 1000 kW                 | Guizhou   | Yonggui Energy<br>Development Co., Ltd.<br>(Jiaozishan coal<br>mine)    | 2019.8           |
| 26 | CHG620V16 Silent Type Low<br>Concentration Mashgas Generator Set | 1000 kW | 1   | 1000 kW                 | Guizhou   | Yonggui Energy<br>Development Co., Ltd.<br>(Qianxi Jinpo Coal<br>Mine)  | 2019.8           |
| 27 | CHG620V16 Low Concentration<br>Mashgas Generator Set             | 1000 kW | 1   | 1000 kW                 | Shanxi    | Shanxi Jiayuan Zhiyuan<br>New Energy Technology<br>Co., Ltd.            | 2019.1           |
| 28 | CHG620V12 Silent Type Low<br>Concentration Mashgas Generator Set | 800 kW  | 3   | 2400 kW                 | Guizhou   | Guizhou Langyue<br>Mining Investment Co.,<br>Ltd. (First phase)         | 2020.4           |
|    |                                                                  |         |     |                         |           |                                                                         |                  |



#### GAS ENGINE MARKET STATISTICS

| Nº | Name                             | Model   | QTY | Installed capacity (kW) | Country | Company     | Date of contract |
|----|----------------------------------|---------|-----|-------------------------|---------|-------------|------------------|
| 1  | CHG622V20 Gas Engine Power Plant | 2000 kW | 2   | 4000 kW                 | Nigeria | VMAN Africa | 2020.3           |
| 2  | DT30 Gas Engine Power Plant      | 500 kW  | 10  | 5000 kW                 | Russia  | VMAN Europe | 2023.3           |
| 3  | CHG620V12 Gas Engine Power Plant | 1000 kW | 4   | 4000 kW                 | Russia  | VMAN Europe | 2023.5           |
| 4  | DT30 Gas Engine Power Plant      | 500 kW  | 8   | 3000 kW                 | Russia  | VMAN Europe | 2023.6           |
| 5  | CHG622V20 Gas Engine Power Plant | 2000 kW | 5   | 10000 kW                | Russia  | VMAN Europe | 2023.7           |
| 6  | CET13 Gas Engine Power Plant     | 250 kW  | 25  | 6250 kW                 | Ukraine | VMAN Europe | 2023.8           |
| 7  | CHG620V16 Gas Engine Power Plant | 1500 kW | 2   | 3000 kW                 | Russia  | VMAN Europe | 2023.9           |
| 8  | CET13 Gas Engine Power Plant     | 250 kW  | 20  | 5000 kW                 | Ukraine | VMAN Europe | 2024.4           |
| 9  | CET13 Gas Engine Power Plant     | 250 kW  | 15  | 3750 kW                 | Ukraine | VMAN Europe | 2024.5           |
| 10 | CET13 Gas Engine Power Plant     | 250 kW  | 8   | 2000 kW                 | Russia  | VMAN Europe | 2024.6           |
| 11 | DT30 Gas Engine Power Plant      | 500 kW  | 7   | 3500 kW                 | Russia  | VMAN Europe | 2024.6           |
| 12 | CET13 Gas Engine Power Plant     | 250 kW  | 80  | 20000 kW                | Ukraine | VMAN Europe | 2024.6           |
| 13 | CHG620V16 Gas Engine Power Plant | 1500 kW | 7   | 10500 kW                | Russia  | VMAN Europe | 2024.7           |



Website



Linked In

# VMAN ENGINE

Building102-202, Zone E4 & E10, Bay Valley II,
No.1566 Guoquan Rd(N)
Shanghai 200438

:50 Raffles Place, #34-04 Singapore Land Tower 048623 Singapore